
VOACaloid∗

A “better” “hardware-based” “portable” “solution” for the “real-time”
“generation” of “singing”

Aaron Thapa
notsmart98@gmail.com
@yoyo@m.ggrks.moe†

Thomas Jefferson High School for Science and Technology

2023 April 0

Abstract
Singing Voice Synthesis (SVS) technologies have advanced to the point that they can now often
be confused for the human singers they are based on. However, software SVS (the most common
kind of SVS), has proven difficult to use in live performance. In this article, I present a live,
human-controlled, hardware-based SVS device whose construction involves obscure parts obtained
in suspicious circumstances, a Raspberry Pi Zero, and apathy on scales never-before-seen, even in
this conference.

1. Introduction
Composers of music are often hesitant to include
vocals on their work. For singers, singing for
extended periods can lead to vocal strain. For
non-singers, working with singers for extended
periods can cause mental strain. To resolve this
issue, various synthesized singing technologies
have been developed.

1.1. History of SVS
The first computer singer was an IBM 7904
owned by Bell Labs in 1961 [1]. Becasuse of the
hardware, the voice that it produced was limited

and not realistic. Later, the Digital Equipment
Corporation (DEC) brought several implemen-
tations of SVS to a larger market, known col-
lectively as DECtalk [2]. Originally, DECtalk
was a hardware product, using ICs to generate
the voice, but software implementations and li-
braries were later produced, allowing program-
mers to integrate voice synthesis and SVS into
their codebases. Notably, DECtalk was fea-
tured in NASA’s video game, Moonbase Alpha, in
which players often used the SVS engine in a hu-
morous manner1 [3]. Most recently, companies
such as Google have been developing AI-based
text-to-speech engines [4].

∗VOAC: Voice synthesizer on a chip; own coinage
†Quite possibly the first Mastodon link in SIGBOVIK History, but I wouldn’t be surprised to see more this year.
1John Madden John Madden John Madden John Madden John Madden John Madden John Madden John Madden

John Madden John Madden

mailto:notsmart98@gmail.com
https://m.ggrks.moe/@yoyo

1.2. Vocaloid
In 2000, Hideki Kenmochi created a singing voice
synthesizer project called “Vocaloid”, from “vo-
cal” and “android” [5]. Vocaloid generated out-
put by concatenating individual recordings of
phonemes from a singer, allowing for a much
more realistic sound than previous attempts.
With support from Yamaha, the first commer-
cial version of Vocaloid was released in 2003 [1].

After the 2007 release of Vocaloid 2, Cryp-
ton Future Media created a voice called Hat-
sune Miku, now better known than Vocaloid it-
self [6]. Yamaha themselves released two voices,
VY1 (“Mizki”) and VY2 (“Yūma”).

1.3. eVocaloid
In 2012, Yamaha implemented a version of
Vocaloid in one of their synthesizer ICs, the
YMW820 [7], also known as the NSX-1. The
“e” prefix stands for “embedded”, and was also
added to the name of the voice, VY1, to make
eVY1 the name for the voice bank. In 2014,
Gakken, a Japanese educational company, re-
leased the “Pocket Miku” [8]. Its stylophone-
style pitch input is suboptimal for live perfor-
mance [9]. Additionally, the only way to control
the current syllable is by sending it MIDI mes-
sages from another device [9].

1.4. VOACaloid
This project aimed to create a “portable” de-
vice which uses the capabilities of the YMW820
to allow the user to control it in an “intuitive”
manner, while still being able to use the full ex-
tent of its features in a live, concert-performance
scenario. This could also be described as a
“shanzhai2” version of the Pocket Miku, making
use of the eVY1.

2. Motivation
N/A [10] Indeed, software SVS solutions have
worked in music production, and any live per-

formance of SVS would be much less practi-
cal than just finding a singer. Even Vocaloid
concerts which feature live bands simply use a
pre-rendered track for the Vocaloid singing [11].
Having a portable and playable Vocaloid is very
cool though, thus giving this project some pur-
pose.

2.1. Materials
Name Price Qty.
Aides Tech eVY1 Board ¥9000 1
DMK-25 Midi Controller $65.99 1
DIN Coupler (2 pcs) $8.49 1
USB Midi Adapter $6.99 1
Raspberry Pi Zero $5.00 1
Total: $155.55

Most of the parts were bought on Amazon, ex-
cept for the eVY1 board, which was bought on
Yahoo Shopping Japan, and then shipped to the
US via a mail forwarding service3.

2.2. Software
The Raspberry Pi Zero runs a version of Rasp-
bian with the desktop environment disabled.
The program which routes MIDI messages be-
tween the USB-MIDI adapter, the MIDI con-
troller, and the eVY1 board is written in Python.
When plugged in to power, the Raspberry Pi
boots up and runs detector.py in a headless
session.

3. Development Process
3.1. Device
Once I received the eVY1, I spent a few days
learning how to format the MIDI messages that
I would need to send it from a Jupyter Notebook
(see evy1.ipynb for implementation). Standard
Japanese Romanization is ambiguous, so the
eVY1 shield uses its own phonetic transcription
system, somewhat related to that used in soft-
ware versions of VOCALOID. I used the NSX-1
datasheet [7] to write japanese_to_phoneme()

2Chinese word for Chinese copy
3My uncle

which would take a string of hiragana and con-
vert it to the phoneme text. Using the new
text, phoneme_to_midi_message() creats a Sy-
sEx message to send to the eVY1.

For pitch input, the mido Python module had
most of the tools that were necessary built-in.
I wrote router.py to take incoming MIDI mes-
sages from the MIDI controller and then modify
them to be suitable for the eVY1. At this point,
I still had not decided what I wanted to do with
the project, so I wrote player.py to convert and
play MIDI files.

Then came the Summer of 2022. I stopped
working on the project for about 6 months for
several reasons but mostly because I was out of
the country and was focused on other work.

Once I started having time in my school sched-
ule, I resumed the project, and came up with
the live performance idea. Optimizing for this
proved to be difficult. In detector.py I im-
plemented what would later become the most
important part of the project, the phoneme in-
put system. Crucially, when reading the button
combinations as pressed by the user, it only up-
dates when a new button is pressed, and ignores
the event generated by the button being released.
With this feature working I decided that I did
not want to work anymore.

3.2. Various Side-Projects

There were many points during and after this
project in which I grew bored with developing
the main features. I began working on various
semi-related endeavours which I will write about
here for the purposes of space-filling.

One of the first things I had done which was
unrelated to the project was that I used the eVY1
as a General MIDI-compatible module for com-
posing music. Using it in this manner did mean
that I was unable to use the vocal aspect in any of
the music, alongside MIDI Channel 1 (Channel
0) because it is exclusively used for the voice. In
FL Stuido, I used it as the target for the “MIDI
Out” plugin. The music I produced with the

module was used for a LOVE Jam 2021 Submis-
sion, “Scraper Escaper”4.

Continuing on the MIDI file idea from earlier,
one of the examples that Aides Tech had released
for using the eVY1 shield was an Arduino sketch
which took the binary data of a MIDI file and
sent it to the eVY1 for playback [12]. Based on
that code, I wrote a Python script which could
take a MIDI file and output an Arduino sketch
which could then be uploaded5.

After converting a few songs, I noticed that
the code did not give a correct tempo for certain
input files. Instead of finding the root cause, I
opted to manually change one of the constants
in the file until it sounded about right. Not do-
ing this resulted in several humorous files, such
as s2chemical3.ino from Sonic 2, which played
much too fast.

Router.py was an early attempt at what
would eventually become the main functionality.
Its purpose was to route midi msesages from the
selected device to the eVY1, but I also left in
some aspects such as choosing the MIDI chan-
nel which note events would be sent to, so that
other instrument sounds could be used bseides
the voice.

4. Usage
Using the device is quite simple. Once the Pi has
power, one can simply press the pads on the midi
controller in accordance with the table in Ap-
pendix A and press the melodic keys to achieve
the desired pitch. Understanding how to get the
software into a usable state is left as an exercise
for the reader, as is learning how to play any real
songs.

5. Demonstration
I understand that giving some kind of output
sample or a demonstration at all is pretty im-
portant. However, if you are reading this para-
graph, forces beyond my control have conspired

4Game can be played at: https://bluesheep7.itch.io/scraper-escaper, music can be found at: https:
//youtu.be/X0FZDJCPhIU

5Yes, I understand the irony of using a Python script to write C code. I also think it’s very funny.

https://bluesheep7.itch.io/scraper-escaper
https://youtu.be/X0FZDJCPhIU
https://youtu.be/X0FZDJCPhIU

such that I am unable to access this device until
beyond the deadline. However, any skilled per-
formance would sound no different from one be-
ing controlled by a MIDI file. Thus, I will point
to the demonstrations from Aides Tech, available
on their page for the eVY1 as sufficient examples
of eVY1 output.

6. Discussion

This device is completely impractical, and it does
not satisfy a live performer’s needs. The output
is far too noisy, and it is hard to power cleanly.

6.1. Comparison with Human Singer

Comparison VOACaloid Human
Singer

Wages D
Energy Consumption D
Polyphony D
Vocal Range D
Percussive Ability D
Total: 5 0

As this impartial and objective comparison
shows, the VOACaloid is unequivocally the best
singing device ever created. After all, just about
anything can beat working with a human.

7. Future Developments

7.1. Of this project

This section is inherently difficult to write be-
cause anything I write in here could theoreti-
cally be implemented before the deadline and
thus would need to be removed from this sec-
tion. Thus, I will not be including any possible
future developments, and instead be implement-
ing them and describing them elsewhere in this
paper. Of course, I could have waited until I
was truly “finished” with the project, but that
is no fun. I cannot predict the future, so I do
not know what I will implement. Any ideas for

future developments can be sent to my email, as
listed at the top of this paper.

Since I have written the last paragraph, the
SIGBOVIK deadline has been announced, and I
had long decided to stop working. I ended up not
using the MIDI in and out connections which I
had bought. One idea I had was to be able to
connect to the shell using a terminal program
over the MIDI connectors. Obviously it would
have been terrible to use, but I could probably
implement it in the future if I cared to continue
working on this (which I don’t).

7.2. Of SVS in general

Just who do you think I am? We’ve proven that
I’m not smart enough to make anything useful,
let alone predict the future of a fast-moving sci-
entific field. We’ve all seen what ChatGPT has
done to writing and what stable diffusion has
done to art, who’s to say that something similar
can’t come of CeVio or Neutrino. CeVio is al-
ready generally indistinguishable from a human
voice with heavy processing.

8. Acknowledgments
I would first like to thank those at Yamaha re-
sponsible for the development of Vocaloid. I
would then like to thank my lab director and
supervisor, Kuprenas, who managed to keep
me mostly on track during the creation of this
project, and gave me the funds to buy the MIDI
controller, and Paul Drongowski, for maintain-
ing his blog and archiving the datasheets and
web tools for the NSX-1. Thanks to the devel-
opers of TEX and LATEX for making writing pa-
pers enjoyable, and thanks to the contributors
to XƎLATEX for adding Unicode support to make
writing this specific paper possible. Thanks to
Donner for not writing any useful documentation
for their MIDI controller. I would like to thank
Thomas Chick for the previous joke [13], as well
as Tom Wildenhain for introducing me to SIG-
BOVIK, and Tom Murphy VII for reminding me
it exists every year6.

6Wow, I didn’t notice that they were all Toms; that’s pretty cool.

References
[1] Gakken, Pocket Miku: The singing key-

board, 2014. [Online]. Available: https://
cdn-shop.adafruit.com/pdfs/pocket_
miku.pdf.

[2] A. Pollack, “Technology; audiotex: Data
by telephone,” The New York Times,
Jan. 5, 1984.

[3] VocaDB, Moonbase Alpha text-to-speech,
2023. [Online]. Available: https : / /
vocadb.net/Ar/85226.

[4] A. van den Oord, S. Dieleman, H. Zen, et
al., “Wavenet: A generative model for raw
audio,” CoRR, vol. abs/1609.03499, 2016.
arXiv: 1609 . 03499. [Online]. Available:
http://arxiv.org/abs/1609.03499.

[5] H. Kenmochi, Vocaloid2、初音ミク、ユーザ、
UGM サイト、権利者 [VOCALOID2, Hat-
sune Miku, users, UGM sites and right-
ful claimants - the report], 2008. [Online].
Available: http : / / www . dcaj . or . jp /
project / report / pdf / 2007 / dc08 _ 03 .
pdf.

[6] B. Roseboro, “The Vocaloid phenomenon:
A glimpse into the future of song-
writing, community-created content,
art, and humanity,” DePauw Univer-
sity, 2019. [Online]. Available: https :
/ / scholarship . depauw . edu / cgi /
viewcontent . cgi ? article = 1125 &
context=studentresearch.

[7] Yamaha, YMW820(NSX-1) sound gener-
ator datasheet, 2012. [Online]. Available:
http : / / sandsoftwaresound . net / wp -
content / uploads / 2017 / 07 / YMW820 _
data_sheet_en.pdf.

[8] Gakken, ポケット・ミク　カスタマイズガイド
[Pocket Miku customize guide], 2008. [On-
line]. Available: https://otonanokagaku.
net/nsx39/data/nsx39midiguide.pdf.

[9] D. Battino, “Hacking Pocket Miku, the
singing stylophone,” Electronic Musician,
vol. 31, Jan. 2018.

[10] T. Wildenhain, “On the turing complete-
ness of MS PowerPoint,” in SIGBOVIK ,
2021.

[11] H. Miku, 【Hatsune Miku】World is Mine
/ ryo（supercell）【初音ミク】, 2013. [Online].
Available: https://www.youtube.com/
watch?v=jhl5afLEKdo.

[12] Switchscience, eVY1 shield example, 2014.
[Online]. Available: https://github.com/
SWITCHSCIENCE/eVY1_Shield.

[13] T. Chick, “‘The SIGBOVIK paper to end
all SIGBOVIK papers’ will not be appear-
ing at this conference,” in SIGBOVIK ,
2021.

https://cdn-shop.adafruit.com/pdfs/pocket_miku.pdf
https://cdn-shop.adafruit.com/pdfs/pocket_miku.pdf
https://cdn-shop.adafruit.com/pdfs/pocket_miku.pdf
https://vocadb.net/Ar/85226
https://vocadb.net/Ar/85226
https://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://www.dcaj.or.jp/project/report/pdf/2007/dc08_03.pdf
http://www.dcaj.or.jp/project/report/pdf/2007/dc08_03.pdf
http://www.dcaj.or.jp/project/report/pdf/2007/dc08_03.pdf
https://scholarship.depauw.edu/cgi/viewcontent.cgi?article=1125&context=studentresearch
https://scholarship.depauw.edu/cgi/viewcontent.cgi?article=1125&context=studentresearch
https://scholarship.depauw.edu/cgi/viewcontent.cgi?article=1125&context=studentresearch
https://scholarship.depauw.edu/cgi/viewcontent.cgi?article=1125&context=studentresearch
http://sandsoftwaresound.net/wp-content/uploads/2017/07/YMW820_data_sheet_en.pdf
http://sandsoftwaresound.net/wp-content/uploads/2017/07/YMW820_data_sheet_en.pdf
http://sandsoftwaresound.net/wp-content/uploads/2017/07/YMW820_data_sheet_en.pdf
https://otonanokagaku.net/nsx39/data/nsx39midiguide.pdf
https://otonanokagaku.net/nsx39/data/nsx39midiguide.pdf
https://www.youtube.com/watch?v=jhl5afLEKdo
https://www.youtube.com/watch?v=jhl5afLEKdo
https://github.com/SWITCHSCIENCE/eVY1_Shield
https://github.com/SWITCHSCIENCE/eVY1_Shield

A. Phoneme Table

Kana Romaji Phoneme Text Buttons
あ a a (0)
い i i (1)
う u M (2)
え e e (3)
お o o (4)
か ka k a (5)
き ki k’ i (6)
く ku k M (7)
け ke k e (0, 1)
こ ko k o (0, 2)
さ sa s a (0, 3)
し shi S i (0, 4)
す su s M (0, 5)
せ se s e (0, 6)
そ so s o (0, 7)
た ta t a (1, 2)
ち chi tS i (1, 3)
つ tsu ts M (1, 4)
て te t e (1, 5)
と to t o (1, 6)
な na n a (1, 7)
に ni J i (2, 3)
ぬ nu n M (2, 4)
ね ne n e (2, 5)
の no n o (2, 6)
は ha h a (2, 7)
ひ hi C i (3, 4)
ふ hu/fu p\M (3, 5)
へ he h e (3, 6)
ほ ho h o (3, 7)
ま ma m a (4, 5)
み mi m’ i (4, 6)
む mu m M (4, 7)
め me m e (5, 6)
も mo m o (5, 7)
ら ra 4 a (6, 7)
り ri 4’ i (0, 1, 2)
る ru 4 M (0, 1, 3)
れ re 4 e (0, 1, 4)
ろ ro 4 o (0, 1, 5)
が ga g a (0, 1, 6)
ぎ gi g’ i (0, 1, 7)
ぐ gu g M (0, 2, 3)
げ ge g e (0, 2, 4)

ご go g o (0, 2, 5)
ざ za dz a (0, 2, 6)
じ zi/ji dZ i (0, 2, 7)
ず zu dz M (0, 3, 4)
ぜ ze dz e (0, 3, 5)
ぞ zo dz o (0, 3, 6)
だ da d a (0, 3, 7)
ぢ di/zi dZ i (0, 4, 5)
づ du/dzu dz M (0, 4, 6)
で de d e (0, 4, 7)
ど do d o (0, 5, 6)
ば ba b a (0, 5, 7)
び bi b’ i (0, 6, 7)
ぶ bu b M (1, 2, 3)
べ be b e (1, 2, 4)
ぼ bo b o (1, 2, 5)
ぱ pa p a (1, 2, 6)
ぴ pi p i (1, 2, 7)
ぷ pu p M (1, 3, 4)
ぺ pe p e (1, 3, 5)
ぽ po p o (1, 3, 6)
や ya j a (1, 3, 7)
ゆ yu j M (1, 4, 5)
よ yo j o (1, 4, 6)
わ wa w a (1, 4, 7)
ゐ wi w i (1, 5, 6)
ゑ we w e (1, 5, 7)
を wo/o o (1, 6, 7)
ふぁ fa p\a (2, 3, 4)
つぁ tsa ts a (2, 3, 5)
うぃ wi w i (2, 3, 6)
すぃ si s i (2, 3, 7)
ずぃ zi dz i (2, 4, 5)
つぃ tsi ts i (2, 4, 6)
てぃ ti t’ i (2, 4, 7)
でぃ di d’ i (2, 5, 6)
ふぃ fi p\’ i (2, 5, 7)
とぅ tu t M (2, 6, 7)
どぅ du d M (3, 4, 5)
いぇ ye j e (3, 4, 6)
うぇ we w e (3, 4, 7)
きぇ kye k’ e (3, 5, 6)
しぇ she S e (3, 5, 7)
ちぇ che tS e (3, 6, 7)
つぇ tse ts e (4, 5, 6)
てぇ tee t’ e (4, 5, 7)
にぇ nye J e (4, 6, 7)
ひぇ hye C e (5, 6, 7)

みぇ mye m’ e (0, 1, 2, 3)
りぇ rye 4’ e (0, 1, 2, 4)
ぎぇ gye g’ e (0, 1, 2, 5)
じぇ jye dZ e (0, 1, 2, 6)
でぇ dee d’ e (0, 1, 2, 7)
びぇ bye b’ e (0, 1, 3, 4)
ぴぇ pye p’ e (0, 1, 3, 5)
ふぇ fe p\e (0, 1, 3, 6)
うぉ wo w o (0, 1, 3, 7)
つぉ tso ts o (0, 1, 4, 5)
ふぉ fo p\o (0, 1, 4, 6)
きゃ kya k’ a (0, 1, 4, 7)
しゃ sha S a (0, 1, 5, 6)
ちゃ cha tS a (0, 1, 5, 7)
てゃ tya t’ a (0, 1, 6, 7)
にゃ nya J a (0, 2, 3, 4)
ひゃ hya C a (0, 2, 3, 5)
みゃ mya m’ a (0, 2, 3, 6)
りゃ rya 4’ a (0, 2, 3, 7)
ぎゃ gya N’ a (0, 2, 4, 5)
じゃ ja/jya dZ a (0, 2, 4, 6)
でゃ dya d’ a (0, 2, 4, 7)
びゃ bya b’ a (0, 2, 5, 6)
ぴゃ pya p’ a (0, 2, 5, 7)
ふゃ fya p\’ a (0, 2, 6, 7)
きゅ kya k’ M (0, 3, 4, 5)
しゅ shu S M (0, 3, 4, 6)
ちゅ chu tS M (0, 3, 4, 7)
てゅ tyu t’ M (0, 3, 5, 6)
にゅ nyu J M (0, 3, 5, 7)
ひゅ hyu C M (0, 3, 6, 7)
みゅ myu m’ M (0, 4, 5, 6)
りゅ ryu 4’ M (0, 4, 5, 7)
ぎゅ gyu g’ M (0, 4, 6, 7)
じゅ jyu dZ M (0, 5, 6, 7)
でゅ dyu d’ M (1, 2, 3, 4)
びゅ byu b’ M (1, 2, 3, 5)
ぴゅ pyu p’ M (1, 2, 3, 6)
ふゅ fyu p\’ M (1, 2, 3, 7)
きょ kyo k’ o (1, 2, 4, 5)
しょ sho S o (1, 2, 4, 6)
ちょ cho tS o (1, 2, 4, 7)
てょ tyo t’ o (1, 2, 5, 6)
にょ nyo J o (1, 2, 5, 7)
ひょ hyo C o (1, 2, 6, 7)
みょ myo m’ o (1, 3, 4, 5)
りょ ryo 4’ o (1, 3, 4, 6)
ぎょ gyo N’ o (1, 3, 4, 7)

じょ jo dZ o (1, 3, 5, 6)
でょ dyo d’ o (1, 3, 5, 7)
びょ byo b’ o (1, 3, 6, 7)
ぴょ pyo p’ o (1, 4, 5, 6)

This table is based on data from the source code for this project, available at https://github.
com/yoyoyonono/evy1py. A good amount of the romaji in this table is complete guesswork.

B. Images

Here you can see the various parts which comprise the VOACaloid. In the top-left corner there
is the Raspberry Pi Zero, to the right of it is the eVY1 Shield, and under it is the MIDI controller.

https://github.com/yoyoyonono/evy1py
https://github.com/yoyoyonono/evy1py

	Introduction
	History of SVS
	Vocaloid
	eVocaloid
	VOACaloid

	Motivation
	Materials
	Software

	Development Process
	Device
	Various Side-Projects

	Usage
	Demonstration
	Discussion
	Comparison with Human Singer

	Future Developments
	Of this project
	Of SVS in general

	Acknowledgments
	Phoneme Table
	Images

